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Week 7: Concurrent State Machines 
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A collection of states: 
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An initial state: 
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A collection of transitions: 
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Transitions have labels: 

There are many variants of state machines, each giving different labels and semantics 
associated with those labels. Since we are interested in concurrent composition of state 
machines, we will give our state machines explicit inputs and outputs, and the labels will refer to 
these (reading and writing them). 
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Guards: Predicates on transitions 

This state machine is nondeterminate because there are two simultaneously enabled transitions 
leaving state B. Ptolemy II by default rejects such state machines. 
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Nondeterministic State Machines 

Transitions can be marked nondeterministic and the model executes. This state machine will 
remain in state B for a random number of ticks then go to C and stay there. 
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Final states: 

This model stops executing when it reaches state C. 
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Extended State Machines can operate on 
variables: 

This model produces a random number and then stops. 
The set actions perform the operations on the local variable count. 
If the selection among transitions has fixed probability, then the random number generated 
will have a geometric distribution.  

If the variables include 
unbounded datatypes 
(integers, arrays), then 
the model become 
Turing complete. 
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I/O Automata 

This model has an input port named “input” and an output port named “output”. Given an 
input with any (non-absent) value, it starts counting. It counts a random number of ticks 
according to a geometric distribution, and then produces an output. 
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Using this in an SR model 

This model  
produces one  
value after a  
random amount 
of time (according to a 
geometric distribution), 
and then none after that. 

Lee 07: 12 

Hierarchical State Machines & Preemption 

Here, the count 
can be preempted 
by a reset signal. 
 
Here, the self 
transition is a reset 
transition, which 
means that when 
entering the 
destination state, it 
gets reset to its 
initial state. 
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Discussion 

Hierarchy is only syntactic sugar. 
 
How much syntax does it affect? 
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Modal Models 

Whereas 
Statecharts 
lumps together 
the state machine 
semantics and 
the concurrency 
model, Ptolemy II 
separates these. 
 
A state may 
refine to another 
state machine or 
to a concurrent 
model. 
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Concurrent State Machines in Ptolemy II 
The hierarchy can be further 
extended, where the concurrent 
model can include components that 
refine to state machines or other 
concurrent models. 
 
This gives us concurrent state 
machines. 

Class definition 

Instance 
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Background on Concurrent State Machines 

Statecharts [Harel 87] 
I/O Automata [Lynch 87] 
Esterel [Berry 92] 
SyncCharts [André 96] 
*Charts [Girault, Lee, Lee 99] 
Safe State Machine (SSM) [André 03] 
SCADE [Berry 03] 
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Simple Traffic Light Example  in Statecharts 
 

Case study 

• Pred: pedestrian red signal 
• Pgrn(0): turn pedestrian green off 
• Cgrn: car green 
• Sec: one second time 
• 2 Sec: two seconds time 
• Pgo/Pstop: pedestrian go/stop 
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Traffic Light Example 
in Ptolemy II 

Whereas 
Statecharts 
lumps together 
the state machine 
semantics and 
the concurrency 
model, Ptolemy II 
separates these. 
 
Here we have 
chosen the SR 
Director, which 
realizes a true 
synchronous 
fixed point 
semantics. 
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Concurrent State Machines in Ptolemy II 
In Ptolemy II, we have 
implemented an SR Director (for 
synchronous concurrent models) 
and an FSM Director (for 
sequential decision logic). Rather 
than combining them into one 
language (like Statecharts), 
Ptolemy II supports  
hierarchical 
combinations  
of MoCs. 

Class definition 

Instance 
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Syntax Comparisons between  
Statecharts and Ptolemy II 

 The Ptolemy II model and the Statecharts model differ 
in syntax. Some issues to consider when evaluating a 
syntax: 
l Rendering on a page 
l Showing dependencies in concurrent models 
l Scalability to complex models 
l Reusability (e.g. with other concurrency models) 
l Special notations (e.g. “3 Sec”). 
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Simple Traffic Light Example  in  
Statecharts, from Reinhard 
von Hanxleden, Kiel University 
 

Case study for Ptolemy II Design 

In StateCharts, the communication 
between concurrent components is 
not represented graphically, but is 
rather represented by name 
matching. Can you tell whether there 
is feedback? 
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Syntax comparisons 

Now can you tell whether there is feedback? 
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Semantics Comparisons 

 The Ptolemy II model and the Statecharts model have 
similar semantics, but combined in different ways. 
Some issues to consider: 
l Separation of concurrency from state machines 
l Nesting of distinct models of computation 
l Expanding beyond synchronous + FSM to model the 

(stochastic) environment and deployment to hardware. 
l Styles of synchronous semantics (Ptolemy II realizes a 

true fixed-point constructive semantics). 
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Constructive Semantics (Part 1) 

When using state machines with SR providing the 
concurrency model, then semantics is given by the least 
fixed point, obtained constructively via the Kleene fixed-
point theorem. 
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Side-by-Side Composition 

Synchronous composition: the machines react 
simultaneously and instantaneously. 
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Cascade Composition 

Synchronous composition: the machines react 
simultaneously and instantaneously, despite the apparent 
causal relationship! 
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Synchronous Composition: 
Reactions are Simultaneous and Instantaneous 

Consider a cascade composition as follows: 
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Synchronous Composition: 
Reactions are Simultaneous and Instantaneous 

In this model, you must not think of machine A as reacting before machine 
B. If it did, the unreachable states would not be unreachable. 

SC = SA�SB

unreachable 
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Feedback Composition 

Recall that everything can be viewed as feedback composition. 
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Well-Formed Feedback 

x y 

s 

At the n-th reaction, we seek s(n) �Vy⇥{absent} such that

s(n) = ( f (n))(s(n))

There are two potential problems:

1. It does not exist.

2. It is not unique.

In either case, we call the system ill formed. Otherwise, it is
well formed.

Note that if a state is not reachable, then it is irrelevant to
determining whether the machine is well formed.
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Well-Formed Example 

In state s1, we get the unique s(n) = absent.
In state s2, we get the unique s(n) = present.
Therefore, s alternates between absent and present.
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Composite Machine 
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Ill-Formed Example 1 (Existence) 

In state s1, we get the unique s(n) = absent.
In state s2, there is no fixed point.
Since state s2 is reachable, this composition is ill formed.

Lee 07: 34 

Ill-Formed Example 2 (Uniqueness) 

In s1, both s(n) = absent and s(n) = present are fixed points.
In state s2, we get the unique s(n) = present.
Since state s1 is reachable, this composition is ill formed.
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Constructive Semantics: Single Signal 

1. Start with s(n) unknown.

2. Determine as much as you can about ( f (n))(s(n)).

3. If s(n) becomes known (whether it is present, and if it is
not pure, what its value is), then we have a unique fixed
point.

A state machine for which this procedure works is said to be
constructive.
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Non-Constructive Well-Formed State Machine 

In state s1, if the input is unknown, we cannot immediately tell
what the output will be. We have to try all the possible values
for the input to determine that in fact s(n) = absent for all n.

For non-constructive machines, we are forced to do exhaus-
tive search. This is only possible if the data types are finite, and
is only practical if the data types are small.
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Must / May Analysis 

For the above constructive machine, in state s1, we can im-
mediately determine that the machine may not produce an out-
put. Therefore, we can immediately conclude that the output is
absent, even though the input is unknown.

In state s2, we can immediately determine that the machine
must produce an output, so we can immediately conclude that
the output is present.
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Subtlety: Constructive Semantics (Part 2) 

The constructive semantics is based on two things: 
•  Iteration to a least fixed point. 
•  Construction of the functions f (n) from an FSM 
The second of these is subtle. 

Implicit default transition does 
not produce an output. 
Hence, to know that the 
output is present, must 
analyze guards to know that 
at least one of them is true! In 
general, this analysis is 
undecidable. In practice, it is 
far from trivial. 
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Constructive Semantics, Esterel Style  
(Berry, 2003) 

•  Iteration to a least fixed point. 
•  Construction of the functions f (n) from an FSM 
 
Where the latter asserts: 
•  An output is absent if no transition that might become 

enabled asserts it is present. 
•  An output is present if there exists a transition that is 

enabled and asserts the output. 
(Notice the asymmetry). 
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Constructive Semantics, Esterel Style  
(Berry, 2003) 

Rejects this model: 
 
 
 
 
 
 
 
because when the input is unknown, there is no single 
transition enabled that asserts the transition. 
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Ptolemy II Implements the Esterel-Style 
Constructive Semantics 
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Constructive Semantics: Multiple Signals 

1. Start with s1(n), · · · ,sN(n) unknown.

2. Determine as much as you can about ( f (n))(s1(n), · · · ,sN(n)).

3. Using new information about s1(n), · · · ,sN(n), repeat step
(2) until no information is obtained.

4. If s1(n), · · · ,sN(n) all become known, then we have a
unique fixed point and a constructive machine.

A state machine for which this procedure works is said to be
constructive.
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Constructive Semantics: Multiple Actors 

Procedure is the same. 
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Constructive Semantics: Arbitrary Structure 

Procedure is the same. 
 
A state machine language with constructive semantics 
will reject all compositions that in any iteration fail to 
make all signals known. 
 
Such a language rejects some well-formed compositions. 
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Conclusions 

¢  State machines, extended state machines, and I/O automata 
provide expressive sequential decision logic. 

¢  Variants support hierarchy (in different ways), nondeterminism, 
etc. 

¢  Statecharts is a composition of a single-clock synchronous-
reactive concurrent MoC with finite state machines. 

¢  Ptolemy II separates these two semantic models using the idea 
of modal models. 


