
l 1

Concurrent Models of
Computation

Edward A. Lee
Robert S. Pepper Distinguished Professor, UC Berkeley
EECS 219D
Concurrent Models of Computation
Fall 2011

Copyright © 2009-2011, Edward A. Lee, All rights reserved

Week 7: Concurrent State Machines

Lee 07: 2

A collection of states:

l 2

Lee 07: 3

An initial state:

Lee 07: 4

A collection of transitions:

l 3

Lee 07: 5

Transitions have labels:

There are many variants of state machines, each giving different labels and semantics
associated with those labels. Since we are interested in concurrent composition of state
machines, we will give our state machines explicit inputs and outputs, and the labels will refer to
these (reading and writing them).

Lee 07: 6

Guards: Predicates on transitions

This state machine is nondeterminate because there are two simultaneously enabled transitions
leaving state B. Ptolemy II by default rejects such state machines.

l 4

Lee 07: 7

Nondeterministic State Machines

Transitions can be marked nondeterministic and the model executes. This state machine will
remain in state B for a random number of ticks then go to C and stay there.

Lee 07: 8

Final states:

This model stops executing when it reaches state C.

l 5

Lee 07: 9

Extended State Machines can operate on
variables:

This model produces a random number and then stops.
The set actions perform the operations on the local variable count.
If the selection among transitions has fixed probability, then the random number generated
will have a geometric distribution.

If the variables include
unbounded datatypes
(integers, arrays), then
the model become
Turing complete.

Lee 07: 10

I/O Automata

This model has an input port named “input” and an output port named “output”. Given an
input with any (non-absent) value, it starts counting. It counts a random number of ticks
according to a geometric distribution, and then produces an output.

l 6

Lee 07: 11

Using this in an SR model

This model
produces one
value after a
random amount
of time (according to a
geometric distribution),
and then none after that.

Lee 07: 12

Hierarchical State Machines & Preemption

Here, the count
can be preempted
by a reset signal.

Here, the self
transition is a reset
transition, which
means that when
entering the
destination state, it
gets reset to its
initial state.

l 7

Lee 07: 13

Discussion

Hierarchy is only syntactic sugar.

How much syntax does it affect?

Lee 07: 14

Modal Models

Whereas
Statecharts
lumps together
the state machine
semantics and
the concurrency
model, Ptolemy II
separates these.

A state may
refine to another
state machine or
to a concurrent
model.

l 8

Lee 07: 15

Concurrent State Machines in Ptolemy II
The hierarchy can be further
extended, where the concurrent
model can include components that
refine to state machines or other
concurrent models.

This gives us concurrent state
machines.

Class definition

Instance

Lee 07: 16

Background on Concurrent State Machines

Statecharts [Harel 87]
I/O Automata [Lynch 87]
Esterel [Berry 92]
SyncCharts [André 96]
*Charts [Girault, Lee, Lee 99]
Safe State Machine (SSM) [André 03]
SCADE [Berry 03]

l 9

Lee 07: 17

Simple Traffic Light Example in Statecharts

Case study

• Pred: pedestrian red signal
• Pgrn(0): turn pedestrian green off
• Cgrn: car green
• Sec: one second time
• 2 Sec: two seconds time
• Pgo/Pstop: pedestrian go/stop

Lee 07: 18

Traffic Light Example
in Ptolemy II

Whereas
Statecharts
lumps together
the state machine
semantics and
the concurrency
model, Ptolemy II
separates these.

Here we have
chosen the SR
Director, which
realizes a true
synchronous
fixed point
semantics.

l 10

Lee 07: 19

Concurrent State Machines in Ptolemy II
In Ptolemy II, we have
implemented an SR Director (for
synchronous concurrent models)
and an FSM Director (for
sequential decision logic). Rather
than combining them into one
language (like Statecharts),
Ptolemy II supports
hierarchical
combinations
of MoCs.

Class definition

Instance

Lee 07: 20

Syntax Comparisons between
Statecharts and Ptolemy II

 The Ptolemy II model and the Statecharts model differ
in syntax. Some issues to consider when evaluating a
syntax:
l Rendering on a page
l Showing dependencies in concurrent models
l Scalability to complex models
l Reusability (e.g. with other concurrency models)
l Special notations (e.g. “3 Sec”).

l 11

Lee 07: 21

Simple Traffic Light Example in
Statecharts, from Reinhard
von Hanxleden, Kiel University

Case study for Ptolemy II Design

In StateCharts, the communication
between concurrent components is
not represented graphically, but is
rather represented by name
matching. Can you tell whether there
is feedback?

Lee 07: 22

Syntax comparisons

Now can you tell whether there is feedback?

l 12

Lee 07: 23

Semantics Comparisons

 The Ptolemy II model and the Statecharts model have
similar semantics, but combined in different ways.
Some issues to consider:
l Separation of concurrency from state machines
l Nesting of distinct models of computation
l Expanding beyond synchronous + FSM to model the

(stochastic) environment and deployment to hardware.
l Styles of synchronous semantics (Ptolemy II realizes a

true fixed-point constructive semantics).

Lee 07: 24

Constructive Semantics (Part 1)

When using state machines with SR providing the
concurrency model, then semantics is given by the least
fixed point, obtained constructively via the Kleene fixed-
point theorem.

l 13

Lee 07: 25

Side-by-Side Composition

Synchronous composition: the machines react
simultaneously and instantaneously.

Lee 07: 26

Cascade Composition

Synchronous composition: the machines react
simultaneously and instantaneously, despite the apparent
causal relationship!

l 14

Lee 07: 27

Synchronous Composition:
Reactions are Simultaneous and Instantaneous

Consider a cascade composition as follows:

Lee 07: 28

Synchronous Composition:
Reactions are Simultaneous and Instantaneous

In this model, you must not think of machine A as reacting before machine
B. If it did, the unreachable states would not be unreachable.

SC = SA�SB

unreachable

l 15

Lee 07: 29

Feedback Composition

Recall that everything can be viewed as feedback composition.

Lee 07: 30

Well-Formed Feedback

x y

s

At the n-th reaction, we seek s(n) �Vy⇥{absent} such that

s(n) = (f (n))(s(n))

There are two potential problems:

1. It does not exist.

2. It is not unique.

In either case, we call the system ill formed. Otherwise, it is
well formed.

Note that if a state is not reachable, then it is irrelevant to
determining whether the machine is well formed.

l 16

Lee 07: 31

Well-Formed Example

In state s1, we get the unique s(n) = absent.
In state s2, we get the unique s(n) = present.
Therefore, s alternates between absent and present.

Lee 07: 32

Composite Machine

l 17

Lee 07: 33

Ill-Formed Example 1 (Existence)

In state s1, we get the unique s(n) = absent.
In state s2, there is no fixed point.
Since state s2 is reachable, this composition is ill formed.

Lee 07: 34

Ill-Formed Example 2 (Uniqueness)

In s1, both s(n) = absent and s(n) = present are fixed points.
In state s2, we get the unique s(n) = present.
Since state s1 is reachable, this composition is ill formed.

l 18

Lee 07: 35

Constructive Semantics: Single Signal

1. Start with s(n) unknown.

2. Determine as much as you can about (f (n))(s(n)).

3. If s(n) becomes known (whether it is present, and if it is
not pure, what its value is), then we have a unique fixed
point.

A state machine for which this procedure works is said to be
constructive.

Lee 07: 36

Non-Constructive Well-Formed State Machine

In state s1, if the input is unknown, we cannot immediately tell
what the output will be. We have to try all the possible values
for the input to determine that in fact s(n) = absent for all n.

For non-constructive machines, we are forced to do exhaus-
tive search. This is only possible if the data types are finite, and
is only practical if the data types are small.

l 19

Lee 07: 37

Must / May Analysis

For the above constructive machine, in state s1, we can im-
mediately determine that the machine may not produce an out-
put. Therefore, we can immediately conclude that the output is
absent, even though the input is unknown.

In state s2, we can immediately determine that the machine
must produce an output, so we can immediately conclude that
the output is present.

Lee 07: 38

Subtlety: Constructive Semantics (Part 2)

The constructive semantics is based on two things:
•  Iteration to a least fixed point.
•  Construction of the functions f (n) from an FSM
The second of these is subtle.

Implicit default transition does
not produce an output.
Hence, to know that the
output is present, must
analyze guards to know that
at least one of them is true! In
general, this analysis is
undecidable. In practice, it is
far from trivial.

l 20

Lee 07: 39

Constructive Semantics, Esterel Style
(Berry, 2003)

•  Iteration to a least fixed point.
•  Construction of the functions f (n) from an FSM

Where the latter asserts:
•  An output is absent if no transition that might become

enabled asserts it is present.
•  An output is present if there exists a transition that is

enabled and asserts the output.
(Notice the asymmetry).

Lee 07: 40

Constructive Semantics, Esterel Style
(Berry, 2003)

Rejects this model:

because when the input is unknown, there is no single
transition enabled that asserts the transition.

l 21

Lee 07: 41

Ptolemy II Implements the Esterel-Style
Constructive Semantics

Lee 07: 42

Constructive Semantics: Multiple Signals

1. Start with s1(n), · · · ,sN(n) unknown.

2. Determine as much as you can about (f (n))(s1(n), · · · ,sN(n)).

3. Using new information about s1(n), · · · ,sN(n), repeat step
(2) until no information is obtained.

4. If s1(n), · · · ,sN(n) all become known, then we have a
unique fixed point and a constructive machine.

A state machine for which this procedure works is said to be
constructive.

l 22

Lee 07: 43

Constructive Semantics: Multiple Actors

Procedure is the same.

Lee 07: 44

Constructive Semantics: Arbitrary Structure

Procedure is the same.

A state machine language with constructive semantics
will reject all compositions that in any iteration fail to
make all signals known.

Such a language rejects some well-formed compositions.

l 23

Lee 07: 45

Conclusions

¢  State machines, extended state machines, and I/O automata
provide expressive sequential decision logic.

¢  Variants support hierarchy (in different ways), nondeterminism,
etc.

¢  Statecharts is a composition of a single-clock synchronous-
reactive concurrent MoC with finite state machines.

¢  Ptolemy II separates these two semantic models using the idea
of modal models.

